Effective drug delivery system for duchenne muscular dystrophy using hybrid liposomes including gentamicin along with reduced toxicity.
نویسندگان
چکیده
It is known that gentamicin (GM) could be a possible treatment for Duchenne Muscular Dystrophy (DMD). However, GM therapy has been hindered by several problems such as severe side effects of GM. In order to resolve these problems, we developed the drug delivery system (DDS) of GM using hybrid liposomes (HL) composed of L-α-dimyristoylphosphatidylcholine (DMPC) and polyoxyethylene(23) lauryl ether (C₁₂(EO)₂₃). The hydrodynamic diameters of HL including GM (GM-HL) were 60-90 nm with a narrow range of the size distribution and the sizes were kept almost constant for over 4 weeks, suggesting that GM-HL could avoid the reticuloendothelial system in vivo. Furthermore, GM-HL accumulated more to the skeletal muscle cells of X chromosome-linked muscular distrophy (mdx) mice as compared to those of normal mice. Significantly, we succeeded in increasing dystrophin positive fibers in skeletal muscle cells of mdx mice using GM-HL along with the reduction of ototoxicity. It is suggested that GM should be carried more efficiently into the muscular cells of mdx mice by HL. These results indicate that HL could be an effective carrier in the DDS of GM therapy for DMD.
منابع مشابه
P164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...
متن کاملDetection of the Duplication in Exons 56-63 of Duchenne Muscular Dystrophy Patients with MLPA
Background Duchenne Muscular Dystrophy (DMD) is a deadly X-linked recessive disorder. This genetic disorder affects 1 among 3,500-5,000 males in the world. The majority of the patients are male, due to the type of inheritance. It affects most of the skeletal, the respiratory, and cardiac muscles, causing these vital organs to contract and eventually mortality.<br...
متن کاملMuscular dystrophy: from pathogenesis to strategy.
Muscular dystrophies are a genetically heterogeneous group of degenerative muscle disorders. It characterized by progressive muscle wasting and weakness of variable distribution and severity. There are several subgroups including Duchenne/Becker, fascioscapulohumeral, limb-girdle, oculopharngeal, and congenital muscular dystrophy. Diagnosis is dependent to the characteristic clinical features i...
متن کاملLong-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy
Duchenne muscular dystrophy (DMD) is an incurable X-linked muscle-wasting disease caused by mutations in the dystrophin gene. Gene therapy using highly functional microdystrophin genes and recombinant adeno-associated virus (rAAV) vectors is an attractive strategy to treat DMD. Here we show that locoregional and systemic delivery of a rAAV2/8 vector expressing a canine microdystrophin (cMD1) is...
متن کاملNanolipodendrosome-loaded glatiramer acetate and myogenic differentiation 1 as augmentation therapeutic strategy approaches in muscular dystrophy
BACKGROUND [Corrected] Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biological & pharmaceutical bulletin
دوره 34 5 شماره
صفحات -
تاریخ انتشار 2011